
Compact Array-Based Mesh Data Structures

Tyler J. Alumbaugh and Xiangmin Jiao

Center for Simulation of Advanced Rockets
Computational Science and Engineering
University of Illinois at Urbana-Champaign
{talumbau,jiao}@uiuc.edu

Summary. In this paper, we present simple and efficient array-based mesh data
structures, including a compact representation of the half-edge data structure for sur-
face meshes, and its generalization—a half-face data structure—for volume meshes.
These array-based structures provide comprehensive and efficient support for query-
ing incidence, adjacency, and boundary classification, but require substantially less
memory than pointer-based mesh representations. In addition, they are easy to
implement in traditional programming languages (such as in C or Fortran 90) and
convenient to exchange across different software packages or different storage media.
In a parallel setting, they also support partitioned meshes and hence are particularly
appealing for large-scale scientific and engineering applications. We demonstrate the
construction and usage of these data structures for various operations, and compare
their space and time complexities with alternative structures.

Key words: mesh data structures, half-edge, half-face, parallel computing

1 Introduction

In scientific computing, mesh data structures play an important role in both numer-
ical computations, including finite element and finite volume codes, and geometric
algorithms, such as mesh adaptation and enhancement. Historically, the designs
of data structures in the numerical and geometric communities have been based on
quite different philosophies, due to the diverse requirements of different applications.
Specifically, numerical solvers aim at space and time efficiency as well as ease of im-
plementation in traditional programming languages such as Fortran 90, so they tend
to use array-based data structures storing minimal information, as exemplified by the
CFD General Notation System (CGNS), an AIAA Recommended Practice [The02].



486 Tyler J. Alumbaugh and Xiangmin Jiao

Geometric algorithms, on the other hand, require convenient traversal and modi-
fication of mesh entities, and hence tend to use comprehensive pointer-based data
structures with substantial memory requirement, and frequently utilize advanced
programming features available only in modern programming languages (such as
templates in C++), as exemplified by the CGAL library [FGK+00]. Increasingly,
modern scientific applications require integrating geometric algorithms with numer-
ical solvers, and this discrepancy in mesh data structures has led to difficulties in
integrating different software packages and even more problems when implementing
geometric algorithms within engineering codes. In a parallel setting, the necessity of
accommodating partitioned meshes introduces additional complexities.

In this paper, we investigate mesh data structures that can serve both numerical
and geometric computations on parallel computers. From an applications’ point of
view, it is desirable that such data structures meet the following requirements:

• Efficient in both time and space, so that mesh entities and their neighborhood
information can be queried and modified without performing global search, while
requiring a minimal amount of storage.

• Neutral of programming languages, so that it can be implemented conveniently
in main-stream languages used in scientific computing, such as C, C++, Fortran
90, and even Matlab.

• Convenient for I/O, so that the data structure can be transferred between dif-
ferent storage (such as between files and main memory) and exchanged across
different software modules.

• Easily extensible to support partitioned meshes, and easy to communicate across
processors on parallel machines.

Meeting these requirements is decidedly nontrivial. Indeed, none of the pre-existing
data structures in the literature appeared to be satisfactory in all these aspects.
In particular, the popular data structures used in numerical computations, such as
the standard element-vertex connectivity for finite element codes [BCO81], do not
support efficient queries (such as whether a vertex is on the boundary) or traversals
(such as from neighbor to neighbor) required by many geometric algorithms. The
comprehensive pointer-based data structures used in geometric algorithms, such as
edge-based data structures for surface meshes [Ket99] and exhaustive incidence-
based data structures for volume meshes [BS97], may require a substantial amount
of memory, even after optimizing their storage to the bare minimum to store only the
required pointers. These pointer-based representations are also difficult to implement
in traditional programming languages, and special attention to memory management
is needed (even in modern programming languages) to avoid memory fragmentation.
In addition, they are inconvenient for I/O and interprocess communication.

In this work, we develop compact array-based data structures for both surface
and volume meshes. Our data structures augment, and can be constructed efficiently
from, the standard element-vertex connectivity. In the context of parallel comput-
ing, only the communication map of shared vertices along partition boundaries is
needed as an additional requirement. Our data structures require a minimal amount
of storage, primarily composed of an encoding of the incidence relationship of d-
dimensional entities along (d − 1)-dimensional sub-entities, and a mapping from
each vertex to one of its incident edges. In two dimensions, our data structure re-
duces to a compact representation of the well-known half-edge data structure. In
three dimensions, it delivers a generalization of half-edges to volume meshes, which



Compact Array-Based Mesh Data Structures 487

we refer to as the half-face data structure. With additional encoding of adjacency in-
formation of (d− 1)-dimensional entities along partition boundaries, we then obtain
a convenient representation of partitioned meshes for parallel computing.

The remainder of the paper is organized as follows. Sec. 2 presents some basic def-
initions, assumptions, and observations behind our data structures. Sec. 3 describes
an array-based data structure for surface meshes, which resembles the well-known
half-edge data structure. Sec. 4 introduces a half-face data structure and its array-
based implementation. Sec. 5 extends the data structures for partitioned meshes in
a parallel setting. Finally, Sec. 6 concludes the paper with a discussion of future
work.

2 Preliminaries

Combinatorially, a d-dimensional mesh refers to a collection of topological entities
of up to d dimensions, along with the incidence relationship of entities of different
dimensions and adjacency of entities of the same dimension, where d is 2 for surface
meshes and 3 for volume meshes. In this paper, we refer to the 0-dimensional en-
tities vertices, the 1-dimensional entities edges, the 2-dimensional entities faces (or
facets), and the 3-dimensional entities cells. We use elements as a synonym of the
d-dimensional entities (i.e., faces in a surface mesh and cells in a volume mesh). We
require a mesh to be conformal, in the sense that two adjacent cells intersect at a
shared face, edge, or vertex, and two adjacent faces intersect at a shared edge or
vertex.

In scientific and engineering applications, in general only a few types of elements
are used in a mesh, including triangles and quadrilaterals for surface meshes and
tetrahedra, prisms, pyramids, and hexahedra for volume meshes, either linear or
quadratic. In this paper, we focus on linear elements. In general, the sub-entities
within an element are ordered and assigned local IDs following a given convention,
for consistent numerical and geometric computations (such as the calculation of
the Jacobian and face normals) and for exchanging data across different software
packages. In addition, the sub-entities within a sub-entity (such as the vertices within
a face of a tetrahedron) are also ordered consistently. Targeted at these applications,
we focus our attention on the meshes composed of the most commonly used element
types, and adopt the widely used CGNS conventions [The02] to number sub-entities.
Fig. 1 depicts the conventions for the most common elements. In addition, we assume
the vertices are assigned consecutive integer IDs ranging from one to the number of
vertices, and similarly for elements. In a parallel setting, each partition is assumed
to have its own numbering systems for vertices and elements. Given an element,
we assume one can determine its type from the element ID in negligible time, by
comparing with the minimum and maximum IDs of each type of elements if the
elements of the same type are numbered consecutively, or by performing a table
lookup.

To simplify presentation, our discussions will mainly focus on manifold models
with boundary. Extension to non-manifold models would involve generalizing the
programming interface and tweaking the internal representation. In numerical and
geometric computations, the boundary of a mesh frequently plays an important role
to impose proper boundary treatments. We classify an entity to be a border entity
if it is on the boundary, and otherwise to be a non-border or interior entity. Each



488 Tyler J. Alumbaugh and Xiangmin Jiao

1 2

3

1
2

3

4

1

3

2

4

1
2

3

3

1

2

3

4

1

2 4

1

2
3

4

1 2

4

5

3

5

1 2

3

4

5

1 2

3

4 5

6

1
2

3

4

6

1

23

4

5

67

8

5

Fig. 1. Local numbering conventions for 2-D and 3-D elements. Underscored num-
bers correspond to local edge IDs, and circled ones correspond to local face IDs. The
vertex next to an edge or face ID is the first vertex of the edge or face.

border entity is said to incident on a hole. In our applications, a surface mesh is
typically composed of the border entities of a volume mesh, and hence in general is
orientable with consistent inward and outward surface normals. A manifold surface
mesh with boundary has the following useful properties:

• Each edge is contained in either one or two faces.
• There is a cyclic sequence of the incident edges of each non-border vertex.
• There is a linear sequence of the incident edges of each border vertex.

Here, an ordered set of entities is said to be a sequence if each pair of consecutive
entities are contained in a higher-dimensional entity. Analogously, a manifold volume
mesh with boundary has the following properties:

• Each face is contained in either one or two cells.



Compact Array-Based Mesh Data Structures 489

• There is a cyclic sequence of the incident border edges of each border vertex.
• There is a cyclic sequence of the incident faces of each non-border edge.
• There is a linear sequence of the incident faces of each border edge.

To manipulate surface and volume meshes, scientific and engineering applications re-
quire efficient mesh data structures (abbreviated as MDS hereafter). An MDS allows
iterating through the entities of a mesh, performing queries on incidence, adjacency,
and classification (in particular, boundary classification) of entities, and modify-
ing the mesh efficiently. We classify incidence relationships to be either upward or
downward, which map an entity to other higher- or lower-dimensional entities, cor-
respondingly. Furthermore, an entity in general is incident on one or more entities
of a given dimension, so we further subdivide the incidence queries into one-to-any
and one-to-all. We assume the valence of the mesh (i.e., the maximum number of
edges incident on a vertex) is bounded by a small constant. We say an MDS is
comprehensive if it can perform every incident, adjacent, or classification query in
a time independent of mesh size. A data structure is complete (or self-contained)
if it contains all the information necessary to construct a comprehensive MDS. In
general, we require an MDS to be complete. Obviously, a comprehensive MDS is
complete, but not vice versa. The goal of this paper is to develop complete and
comprehensive data structures that require minimal storage.

3 Surface Mesh Data Structures

In this section, we investigate data structures for surface meshes in sequential ap-
plications. Issues related to parallelization will be discussed in Sec. 5.

3.1 Traditional Representations

In the literature, two classes of representations of surface meshes have been com-
monly used: edge-based representations, and connectivity tables.

Edge-Based Representations

Edge-based representations have been studied and used extensively in computational
geometry, for their generality and comprehensiveness. Three major variants have
been proposed: the winged-edge [Bau75, Gla91], half-edge [Wei85] (or the doubly-
connected edge list or DCEL [dvOS00]), and quad-edge [GS85] data structures; see
[Ket99] for a comparison and discussion of implementation issues. These data struc-
tures allow efficient local traversal and modification of mesh entities, and are de-
signed to handle arbitrary polygons. In practice, their implementations are typically
pointer-based, and memory optimization has focused on omitting certain pointers
to trade time for space, as in the Computational Geometry Algorithms Library
(CGAL) [FGK+00, Ket99].

Among the edge-based structures, the half-edge data structure (abbreviated as
HEDS hereafter) has been very popular for orientable manifold surfaces for its in-
tuitiveness and ease-of-use. The HEDS is designed based on the observation that
each face is bounded by a loop of directed edges in counterclockwise order, and each



490 Tyler J. Alumbaugh and Xiangmin Jiao

hole is bounded by a loop in clockwise order, as illustrated in Fig. 2. Therefore,
every edge has two directed half-edges (with opposite directions), which are said to
be the twin or the opposite of each other, one in each incident face (or hole). The
programming interface of the HEDS allows a user to query the previous and next
half-edges within a face (or hole), the opposite half-edge, an incident vertex or face
of a half-edge, and vice versa. By flagging border half-edges or their incident holes,
the HEDS also allows querying the boundary classification of any entity.

1

2 3

4

5

67

8

1 2 3

4 5 6

7 8 9

Fig. 2. Illustration of half-edges.

Element V1 V2 V3

1 1 4 5

2 1 5 2

3 2 5 3

4 3 5 6

5 6 5 9

6 8 9 5

7 7 8 5

8 5 4 7

Fig. 3. Connectivity of sample surface mesh.

In a pointer-based implementation of HEDS, an object (or record) is created for
each vertex, half-edge, or face. A half-edge object stores pointers to its opposite,
previous, and next half-edges, as well as to its origin (or destination) vertex and
to an incident face. Each face or vertex stores a pointer to an incident half-edge.
For applications involving computations on both faces and vertices, one can slightly
reduce the storage by omitting either the previous or next half-edge. Therefore, such
an implementation requires at least eight pointers per edge (four per half-edge), and
one pointer per vertex or face. The winged-edge and quad-edge structures have
comparable storage requirements (six pointers per edge) in this setting.

Element Connectivity

The element connectivity is a classic mesh representation for finite element analysis
[BCO81], and is also frequently used for file I/O and for exchanging meshes between
different software modules. A connectivity table lists the vertices contained within
each face in increasing order of their local IDs. Fig. 3 shows the connectivity table
of the sample mesh of Fig. 2. This simple representation is self-contained but not
comprehensive, as it does not support queries such as adjacent faces and boundary
classification. A geometric software library typically constructs an internal edge-
based structure from the connectivity table, and then discards this table.



Compact Array-Based Mesh Data Structures 491

3.2 Array-Based Half-Edges

Inspired by the HEDS and element connectivity, we design a hybrid data structure
that combines the comprehensiveness of the former and the compactness of the
latter. Our design is based on the following observations: The traditional HEDS
must store many pointers in order to support arbitrary polygons. For surface meshes
composed of only triangles and quadrilaterals, we can encode a half-edge based on
its location within its incident face. The incident face and the previous or next half-
edge can then be obtained with simple arithmetic operations without being stored
explicitly. From a local edge ID and the element connectivity table, one can obtain
the IDs of the incident vertices of an edge efficiently. Therefore, we only need to
store the correspondence between twin half-edges and a mapping from each vertex
to any of its incident half-edges.

More specifically, we assign each half-edge an ID composed of a pair of numbers
�f, i�, where f is the ID of its containing face, and i is the index of the edge (starting
from 1, as shown in Fig. 1) within the face. To support boundary classification, we
assign consecutive integer IDs to border edges (starting from 1), and encode the bth
border half-edge as �b, 0�, where the zero value of the second part distinguishes a
border edge from a non-border one. Since the number of edges per face is at most
four, we can encode a half-edge ID in a single integer, using the last three bits to
store the second part and the remaining bits the first part. We now define the arrays
for the HEDS:

• V2e: Map each vertex to the ID of an incident half-edge originated from the
vertex; map a border vertex to a border half-edge.

• E2e: Map each non-border half-edge to the ID of its twin half-edge.
• B2e: Map each border half-edge to the ID of its twin non-border half-edge.

Fig. 4 shows an example of this MDS for the sample mesh in Fig. 2. In terms
of memory management, V2e and B2e are dense one-dimensional arrays, whose
sizes are equal to the numbers of vertices and border edges, respectively. To allow
efficient array indexing, E2e is a two-dimensional array with each row corresponding
to a face, and its number of columns is the maximum number of edges per face
(3 for triangular meshes and 4 for quadrilateral or mixed meshes). Note that the
full array-based HEDS is composed of these three arrays along with the element
connectivity (EC), where EC is a two-dimensional array similar to E2e. Let ni

denote the number of i-dimensional entities in a mesh, where i is between 0 and 2.
Assume that n1 ≈ 3n0 and n2 ≈ 2n0, then the array-based HEDS requires about 7n0

32-bit integers. Compared to pointer-based HEDS, it reduces memory requirement
by about four folds for 32-bit architecture and eight folds for 64-bit architecture.

Given the element connectivity, it is straightforward to construct the three ar-
rays. In particular, we first construct E2e by inserting the half-edges into a hash-table
(or map) with their incident vertices as keys and detecting collisions to match twin
half-edges. A half-edge without a match is identified as a border edge and assigned
a unique border ID, and its and its twin’s half-edge IDs are then inserted into the
corresponding entries in B2e and E2e, respectively. During the above procedure, we
fill in the entry of V2e corresponding to the origin of each half-edge, allowing border
half-edge to overwrite non-border ones but not vice versa.



492 Tyler J. Alumbaugh and Xiangmin Jiao

V2e

Vertex Inc. HE

1 �2, 0�
2 �3, 0�
3 �4, 0�
4 �1, 0�
5 �1, 3�
6 �5, 0�
7 �8, 0�
8 �7, 0�
9 �6, 0�

E2e

Element Half-edges

1 �1, 0� �8, 1� �2, 1�
2 �1, 3� �3, 1� �2, 0�
3 �2, 2� �4, 1� �3, 0�
4 �3, 2� �5, 1� �4, 0�
5 �4, 2� �6, 2� �5, 0�
6 �6, 0� �5, 2� �7, 2�
7 �7, 0� �6, 3� �8, 3�
8 �1, 2� �8, 0� �7, 3�

B2e

Border Opp. HE

1 �1, 1�
2 �2, 3�
3 �3, 3�
4 �4, 3�
5 �5, 3�
6 �6, 1�
7 �7, 1�
8 �8, 2�

Fig. 4. Array-based half-edge data structure of sample surface mesh.

3.3 Properties and Operations

The array-based HEDS has the following useful properties:

1. The full array-based HEDS delivers a comprehensive MDS.
2. E2e and V2e deliver a complete MDS.

To show the comprehensiveness of the full data structure, we summarize the basic
queries as follows. Note that all array indices start from 1, and m denotes the number
of edges of a given face.

• One-to-any downward incidence

– ith edge (half-edge) of face f : return �f, i�
– ith vertex of face f : return EC(f, i)
– origin of non-border half-edge �f, i�: return EC(f, i)

• One-to-any upward incidence

– the incident face of a non-border half-edge �f, i�: return f
– an incident half-edge of vth vertex: return V2e(v)

• Adjacency

– opposite of non-border half-edge �f, i�: return E2e(f, i)
– opposite of border half-edge �b, 0�: return B2e(b)
– previous of non-border half-edge �f, i�: return �f, mod(l + m− 2, m) + 1�
– next of non-border half-edge �f, i�: return �f, mod(l, m) + 1�

• Boundary classification



Compact Array-Based Mesh Data Structures 493

– half-edge �f, i�: return i = 0
– vertex v: return V2e(v).second= 0

Other types of queries are combinations of the above basic operations. In particular
for downward incidence, the destination of a non-border half-edge is the origin of its
previous half-edge; the origin and destination of a border half-edge are the destina-
tion and origin of its opposite half-edge, respectively; the one-to-all incidences from a
face to edges and vertices involves enumerating i from 1 to m. For one-to-all upward
incidence, the incident faces of an edge are those incident on its twin half-edges; the
incident half-edges and faces at a vertex involve accessing all the half-edges incident
on a vertex, enabled by the basic adjacency operations. Starting from a half-edge,
we can rotate around its destination vertex in clockwise order following the links
of opposite and then previous half-edges; the counterclockwise rotation around the
origin vertex of a half-edge follow the links of opposite and then next half-edges.
We also use these rotations to get the previous and next of a border half-edge: For
the former, we loop around the origin of the border half-edge in counterclockwise
order until reaching a border half-edge; for the latter, we loop around its destination
clockwise. Since the valence of the mesh is a small constant, these rotations take
constant time.

To show E2e and V2e are complete, we simply need to construct a procedure to
compute the element connectivity (EC) from these arrays, because EC is a complete
MDS itself. At a high level, the procedure goes as follows: First, allocate and fill in
the element connectivity with zeros. Then, loop through all vertices, and for each
vertex v, visit all the half-edges originated from v as shown above, starting from the
half-edge V2e(v) and then rotating using the adjacency information in E2e. When
visiting a half-edge h = �f, i� with i > 0, we assign EC(f, i) to v. After processing all
the vertices, we then have the complete EC. We comment that E2e is independent
of vertex numbering, but it can also be considered as complete if the vertices are
allowed to be renumbered, since we can determine a vertex numbering from E2e
using a procedure similar to the above. These complete sub-MDS are useful to
reduce the amount of data for I/O and inter-process communications.

3.4 Mesh Modification

A comprehensive mesh data structure allows not only querying but also modifying a
mesh efficiently. In this subsection, we demonstrate how to modify the array-based
HEDS, using edge flipping for triangular meshes as an example. This operation is
used in many algorithms, such as Delaunay triangulation and mesh enhancement
[FG02]. Fig. 5 illustrates a sample edge-flipping operation, which removes an edge
composed of vertices {v1, v3} and creates a new edge composed of {v2, v4}. As a
consequence, the faces {v1, v2, v3} and {v1, v3, v4} (denoted by f and g) are replaced
by {v1, v2, v4} and {v2, v3, v4}, respectively.

Without loss of generality, suppose the fth row of EC is {v3, v1, v2} and gth row
is {v1, v3, v4}, so the first half-edges in f and g are the dashed lines in Fig. 5. When
flipping the edge {v1, v3}, we need only update the entries associated with vi, f , and
g in E2e, B2e, V2e, and EC. Updating V2e and EC is relatively straightforward. For
E2e and B2e, we need to map the half-edges opposite to those in faces f and g to
the new half-edges, update mappings between the half-edges within f and g in E2e.
In summary, an edge flip involves the following four steps:



494 Tyler J. Alumbaugh and Xiangmin Jiao

g

v1v1

v v v v

v

22 3 3

4 4

f

v

g f

Fig. 5. Illustration of edge flipping.

1. if �i, j� ≡ E2e(f, 1) is border then B2e(i) = E2e(g, 3); else E2e(i, j) =
E2e(g, 3); perform the operation symmetrically by switching f and g;

2. E2e(f, 1) = E2e(g, 3); E2e(g, 1) = E2e(f, 3);
E2e(f, 3) = �g, 3�; E2e(g, 3) = �f, 3�;

3. if V2e(v1) = �g, 1� then V2e(v1) =�f, 2�;
if V2e(v2) = �f, 3� then V2e(v2) = �g, 1�;
if V2e(v3) = �f, 1� then V2e(v3) =�g, 2�;
if V2e(v4) = �g, 3� then V2e(v4) = �f, 1�;

4. EC(f, 1) = v4; EC(g, 1) = v2.

In the above, if v3 was the ith (instead of the first) vertex of face f in EC, then
we need to replace half-edge index �f, j� (and its corresponding array indices) by
�f, mod(j + i + 2, 3) + 1�; similarly for g. Other modification operations, such as
edge splitting and edge contraction, are slightly more complex but can be con-
structed similarly. For edge splitting, since the numbers of vertices and faces are
increased by the operation, it is desirable to reserve additional memory for the ar-
rays so that new vertices and faces can be appended to the end. For edge contraction,
since the numbers of vertices and faces decrease, we need to swap the IDs of the to-
be-removed vertex with the one with the largest ID (and similarly for faces), so that
the vertex and element IDs will remain consecutive and the arrays can be shrunk
after contraction.

4 Volume Mesh Data Structures

We now extend the array-based half-edge data structure to develop compact repre-
sentations for volume meshes in serial applications.

4.1 Previous Work

As for surface meshes, the element connectivity is the classic representation for
volume meshes in numerical computations, file I/O, and data exchange, but it is
not a comprehensive representation. A few alternative mesh representations have
been proposed to serve various special purposes, such as mesh generation [DT90,



Compact Array-Based Mesh Data Structures 495

L8̈8], mesh refinement [CSW88, Riv84], and numerical computations [HTW92]. In
[BBCK03], a difference coding was proposed to compress a mesh representation,
but vertices may need to be renumbered for its effectiveness. Recently, an index-
based mesh representation was developed independently of this work [CPE05], which
shares some similarities in mesh-entity representations with our data structures.
Another particularly noteworthy MDS is the algorithm oriented mesh database
(AOMD) [RS03], which provides unified data structures for numerical and geometric
computations.

AOMD is designed based on the observation that a typical application uses only
a subset of incidences.1 It stores the incidences used by an application and omits the
unneeded ones. Its design aims at providing a unified programming interface for ac-
cessing the mesh database independently of the underlying storage. Unfortunately,
the efficiency of AOMD critically depends on a given application. If an application
requires nearly all types of incidences, then the efficiency advantage of AOMD dimin-
ishes. The implementation of AOMD is fairly complex, extensively utilizing template
features of C++ to achieve customizability, and hence its design cannot be easily
adopted in engineering applications written in traditional programming language
(such as Fortran 90). As coupled applications become more and more commonplace,
there are increasing demands for simple volume meshes data structures that are
compact and comprehensive.

7

3

1

5

4

2

3 1

4

8 7
5

6

2

6

Fig. 6. Sample volume mesh.

Element V1 V2 V3 V4

1 2 3 6 7

2 2 6 5 7

3 3 4 6 7

4 4 5 6 7

5 2 6 3 1

6 5 6 2 1

7 6 4 3 1

8 6 5 4 1

Fig. 7. Connectivity of sample volume mesh.

4.2 Array-Based Half-Faces

To achieve compactness and comprehensiveness for volume meshes, we propose a
generalization of the array-based HEDS, called the half-face data structure (HFDS).
Our generalization is based on the observation that faces in volume meshes play a

1In AOMD [RS03], the incidence relation are called adjacency.



496 Tyler J. Alumbaugh and Xiangmin Jiao

similar role as edges in surface meshes: Each face is contained in two cells (or a cell
and a hole), and the two copies of a face have opposite orientations when its vertices
are ordered following the right-hand rule in each cell (i.e., in counterclockwise order
with respect to the inward face normal of the cell). We refer to the two copies of a
face as half-faces, which are said to be the twin or the opposite of each other. As for
half-edges in surface meshes, we encode each half-face by a pair of numbers �c, i�,
where c is the element ID of its containing cell, and i is the face index (starting from
1) within the cell. Furthermore, we assign consecutive IDs to border faces (starting
from 1), and encode a half-face with border ID b as �b, 0�. Since there are at most
six faces per cell, we can encode a half-face ID in one integer, using the last three
bits for the second part and the remaining bits for the first part.

The above encoding scheme suggests a straightforward generalization of HEDS
with three arrays: V2f, F2f, and B2f, which are the counterparts of V2e, E2e, and
B2e, respectively, and in which the half-edge IDs are substituted by half-face IDs.
Indeed, this generalization does provide a legitimate data structure. However, it is
not an ideal generalization, because unlike E2e and V2e in HEDS, F2f and V2f
no longer deliver a complete MDS. The incompleteness is due to the fact that the
ordering of vertices in a half-face is cyclic without a designated starting point, so it
is not always possible to infer the ordering of the vertices within a cell from this sub-
MDS. When supplemented by the element connectivity, this simple generalization
can suffer from inefficiency, as it requires comparing the vertex IDs to align the
half-faces when performing one-to-all incidence queries.

To overcome these limitations, we define the anchor of a half-face as its desig-
nated first vertex, and each half-face then has m anchored copies, where m is the
number of vertices (or edges) of the face. We encode an anchored half-face (AHF)
by a three-part ID �c, i, j�, where the first two parts correspond to the half-face
ID, and the third part corresponds to the anchor index (staring from 0), which is
defined as follows: For a non-border half-face, if the anchor is the kth vertex in the
face-vertex list of the face following the CGNS convention, then the anchor index
is k − 1; for a border half-face, the anchor index is mod(m − t, m), where t is the
anchor index of the vertex in its opposite half-face. Each AHF has one opposite (or
twin) AHF, which is its opposite half-face with the same anchor. The last two parts
of an AHF ID constitute the local AHF ID. The anchor index requires only two bits,
and the local AHF ID requires only five bits, so the full AHF ID can be encoded
in one integer. With 32-bit unsigned integers, this encoding is sufficient for meshes
containing up to 227 (more than 100 million) cells. In addition, we assign the AHF
ID to the first edge of the AHF, and then obtain an ID for each edge within each
face.

In the CGNS convention, each vertex has a local index within a cell. It is use-
ful to store the mapping from the local AHF ID to the vertex’s local index within
the cell. We assign a unique ID (between 1 and the number of polyhedron types,
4 in general) to each type of element. To store the mapping for all element types,
we introduce a three-dimensional array of size 4 × 6 × 4, denoted by eA2v, whose
dimensions correspond to the type IDs, local face IDs, and anchor indices, respec-
tively. In addition, we define an array eAdj of the same size to store the mapping
from each AHF to the local AHF ID of its adjacent AHF within a cell along its first
edge. We now define the complete representation of the half-face data structure:

• V2f: Map each vertex to the AHF anchored at the vertex; map a border vertex
to a border AHF;



Compact Array-Based Mesh Data Structures 497

• F2f: Map each non-border half-face with anchor index 0 to its twin AHF;
• B2f: Map each border half-face with anchor index 0 to its twin AHF.

Fig. 8 shows an example of this MDS for the sample mesh of Fig. 6. Similar to
the array-based HEDS, V2f and B2f are dense one-dimensional arrays, whose sizes
are equal to the numbers of vertices and border faces, respectively. F2f is a two-
dimensional array with each row corresponding to a cell, and its number of columns
is the maximum number of faces in a cell, ranging between four and six. The full
HFDS is composed of these three arrays along with the element connectivity (EC).
The construction of HFDS follows a procedure similar to that of HEDS, except for
the additional operations needed to align the twin half-faces to determine the anchor
indices.

V2f

Vertex Inc. HF

1 �7, 0, 1�
2 �2, 0, 2�
3 �3, 0, 0�
4 �4, 0, 0�
5 �6, 0, 2�
6 �1, 1, 1�
7 �1, 0, 1�

F2f

Element Half-faces

1 �5, 1, 0� �1, 0, 0� �3, 4, 1� �2, 2, 1�
2 �6, 1, 1� �1, 4, 1� �4, 3, 1� �2, 0, 0�
3 �7, 1, 1� �3, 0, 0� �4, 4, 1� �1, 3, 1�
4 �8, 1, 1� �4, 0, 0� �2, 3, 1� �3, 3, 1�
5 �1, 1, 1� �6, 3, 1� �7, 4, 1� �5, 0, 0�
6 �2, 1, 1� �8, 2, 1� �5, 2, 1� �6, 0, 0�
7 �3, 1, 1� �8, 4, 1� �7, 0, 0� �5, 3, 1�
8 �4, 1, 1� �6, 2, 1� �8, 0, 0� �7, 2, 1�

B2f

Border Opp. HF

1 �1, 2, 0�
2 �2, 4, 0�
3 �3, 2, 0�
4 �4, 2, 0�
5 �5, 4, 0�
6 �6, 4, 0�
7 �7, 3, 0�
8 �8, 3, 0�

Fig. 8. Array-based half-face data structure for sample volume mesh.

4.3 Properties and Operations

Similar to HEDS, the array-based HFDS has the following useful properties:

1. The full array-based HFDS delivers a comprehensive MDS.
2. F2f and V2f deliver a complete MDS.

To show the HFDS is comprehensive, we summarize the basic queries as follows.
Again, m denotes the number of edges in a given AHF and is either 3 or 4, and all
indices (except for anchor index) start from 1.



498 Tyler J. Alumbaugh and Xiangmin Jiao

• One-to-any downward incidence

– ith face of cell c anchored at jth vertex in the face: return �c, i, j − 1�
– jth edge of AHF �c, i�: return �c, i, j − 1�
– local index of anchor of non-border AHF �c, i, j� within cell c: return

eA2v(e, i, j + 1), where e is type ID of cell c
– ith vertex of cell c: return EC(c, i)

• One-to-any upward incidence

– incident cell of AHF (or edge) �c, i, j�: return c
– incident AHF (or edge) of vth vertex: return V2f(v)

• Adjacency

– opposite of non-border AHF �c, i, j�: return �d, s, mod(m− j + t, m)�, where
�d, s, t� ≡ F2f(c, i)

– opposite of border AHF �b, 0, j�: same as above, except that �d, s, t� ≡
B2f(b, i)

– previous of AHF �c, i, j� within the face: return �c, i, mod(j + m− 1, m)�
– next of AHF �c, i, j� within the face: return �c, i, mod(j + 1, m)�
– in-cell adjacent AHF of non-border AHF �c, i, j� along edge: return �c, eAdj(e, i, j + 1)�,

where e is type ID of cell c

• Boundary classification

– AHF (edge) �c, i, j�: return i = 0
– vertex v: return V2f(v).second = 0

Other types of queries are combinations of the above basic operations. Some queries
are straightforward generalization of HEDS, including downward incidences (for
border half-faces and one-to-all) and all incident cells of a face. Obtaining incident
faces and cells along an edge involves traversing all the half-faces incident on the
edge, using the opposite and in-cell adjacent operators, so does determining the
border half-face that is adjacent to a border half-face along an edge. The time
complexity for traversing the boundary depends on the number of cells incident on
a border edge. For applications that frequently traverse the boundary, a separate
array B2b can be constructed to save the correspondence of border AHFs, similar
to the E2e array in the HEDS, except that border AHF IDs will be stored instead
of half-edge IDs.

A more complex query is to enumerate all incident AHFs anchored at a vertex,
which is a useful building block for enumerating all incident cells and edges of a
vertex. Using the in-cell adjacency and previous (or next) operators, we can iterate
through the AHFs around an anchor within a cell. Together with the opposite op-
erator, we can then visit the adjacent cells and their AHFs anchored at the vertex.
This process essentially performs a breadth-first traversal over the AHFs around the
vertex, and takes time proportional to the output size.

The argument for the completeness of F2f and V2f is similar to that of HEDS:
the element connectivity (EC) can be constructed from F2f and V2f by looping
through the AHFs around each vertex, starting from the AHF associated with the
vertex in V2f. This complete sub-MDS can be used for efficient file I/O and inter-
process communication, because EC and B2f can be constructed from them without
requiring any additional storage.



Compact Array-Based Mesh Data Structures 499

Table 1. Memory requirements of mesh data structures. The units I and P stand
for the numbers of integers and pointers, respectively.

Mesh type One-level Circular Reduced interior HFDS

Tetrahedral mesh 201n0P 153n0P 76n0P 24n0I

Hexahedral mesh 71n0P 55n0P 31n0P 7n0I

4.4 Comparison

We now compare the storage requirements of the HFDS with some other MDS. In
[BS97], three comprehensive MDS were reported: the “one-level adjacency repre-
sentation”, in which each i-dimensional entity stores points to its incident (i + 1)-
and (i − 1)-dimensional entities when applicable, the “circular adjacency represen-
tation”, in which (i − 1)-dimensional incidence entities are stored for cells, faces,
and edges, along with the incidence cells of each vertex, and the “reduced-interior
representation”, which omit the interior faces and edges in the representation. The
storage requirements of these data structures are competitive with other existing
mesh data structures [BS97, RKS00].

Let ni denote the number of i-dimensional entities in a mesh, where i is between 0
and 3. Assume that 23n0 ≈ 4n3 for tetrahedral meshes and n0 ≈ n3 for hexahedral
meshes [BS97]. For a tetrahedral mesh, the HFDS data structure requires about
24n0 integers, of which 23n0 are for F2f, in addition to the 23n0 integers for EC.
For a hexahedral mesh, the HFDS data structure requires about 7n0 integers, of
which 6n0 are for F2f, in addition to the 8n0 integers for EC. Table 1 compares
the memory requirements of the HFDS (excluding EC) against those reported in
[BS97]. For meshes with fewer than 100 million cells, an integer in HFDS requires 4
bytes, whereas a pointer in other data structures requires 4- and 8-bytes on 32- and
64-bit architectures, respectively. Compared to the reduced-interior representation,
the HFDS delivers roughly three to four folds of reduction in memory on 32-bit
architectures, and six to eight folds on 64-bit architectures. Compared to the one-
level and circular representations, the reduction is roughly an order of magnitude.

5 Parallelization

In a parallel environment (especially on distributed memory machines), a mesh must
be partitioned so that it can be distributed onto multiple processors [GMT98]. In
this context, a border entity on the partition may or may not be on the physical



500 Tyler J. Alumbaugh and Xiangmin Jiao

boundary, and it is important for applications to distinguish the two types. Further-
more, when a process has multiple partitions, it is desirable to allow an algorithm
to traverse across partition boundaries transparently. Our data structures can be
extended conveniently to support such queries and traversals. We now describe the
extension for meshes partitioned using an element-oriented scheme, which assigns
each element to one partition along with its vertices.

Assume that each partition has a unique partition ID, and an efficient mapping
exists for querying the owner process of a given partition. A partition typically
has its own numbering systems for vertices and elements, from 1 to the numbers of
vertices and elements, respectively. For each partition of a surface mesh, we construct
an array-based HEDS. Note that a partition may not strictly be a manifold, as a
vertex may be incident on more than two border edges. However, the HEDS is still
applicable because an edge is always owned by one or two partitions. We define the
counterpart of a border half-edge (on partition boundaries) to be the non-border
half-edge in another partition. Given a mapping between the vertices shared across
partitions, we then construct the following arrays to augment the HEDS:

• B2rp: Map each border edge to the partition ID of its counterpart, or map to
−1 if the edge is on physical boundary.

• B2re: Map each border edge to the edge ID of its counterpart; undefined if on
the physical boundary.

By checking the values in B2rp, we can identify whether entities are on the physical
boundary. In addition, when determining the opposite of a half-edge within a parti-
tion, if its opposite is on the partition boundary, this extended data structure looks
up the counterpart of its opposite border edge and returns the partition ID and
the half-edge ID, so that multiple partitions can be traversed seamlessly. From this
data structure, one can also easily construct the communication pattern for shared
edges across partitions. All the arrays in the extended HEDS are independent of
the process mapping of the partitions, so a partition can be migrated easily across
processes.

The generalization from surface meshes to volume meshes is straightforward.
The counterpart of a border AHF is the non-border AHF with the same anchor. We
introduce a similar set of arrays to map border faces to the partition and AHF IDs
of their counterparts. The construction of these arrays also requires only the vertex
mapping for vertices along partition boundaries.

6 Conclusion

In this paper, we introduced a compact array-based representation for the half-edge
data structure for surface meshes, and a novel generalization to volume meshes.
Our data structures augment the element connectivity by introducing three ad-
ditional arrays. These data structures require minimal additional storage, provide
comprehensive and efficient support for queries of adjacency, incidence, and bound-
ary classification, and can be used to modify a mesh with operations such as edge
flipping. Our data structures reduce memory requirement by a factor of between
three and eight compared to other comprehensive data structures. A more compact
subset of our data structures is also self-contained and can be used for efficient I/O
and interprocess communication.



Compact Array-Based Mesh Data Structures 501

This work so far has mainly focused on two- and three-dimensional conformal
manifold meshes, driven by the needs in the coupled parallel simulations at the Cen-
ter for Simulation of Advanced Rockets [HD00]. These array-based data structures
are readily extensible to higher dimensions, and it is also interesting to generalize
them to non-manifold and/or non-conforming meshes. Another future direction is
to compare the runtime performance of our data structures with other alternative
structures, especially in the context of parallel mesh adaptivity.

Acknowledgements

This work was supported by the U.S. Department of Energy through the University
of California under subcontract B523819, and in part by NSF and DARPA under
CARGO grant #0310446. The first author would like to thank Phillip Alexander
of CSAR for help with numerous software issues. We thank anonymous referees for
their helpful comments.

[Bau72] B. Baumgart. Winged-edge polyhedron representation. Technical report,
Stanford Artificial Intelligence Report No. CS-320, October 1972.

[Bau75] B. G. Baumgart. A polyhedron representation for computer vision. In
National Computer Conference, pages 589–596, 1975.

[BBCK03] Daniel K. Blandford, Guy E. Blelloch, David E. Cardoze, and Clemens
Kadow. Compact representations of simplicial meshes in two and three
dimensions. In Proceedings of 12th International Meshing Roundtable,
pages 135–146, 2003.

[BCO81] E. B. Becker, G. F. Carey, and J. Tinsley Oden. Finite Elements: An
Introduction, volume 1. Prentice-Hall, 1981.

[Bla03] J. Blazek. Comparison of two conservative coupling algorithms for
structured-unstructured grid interfaces, 2003. AIAA Paper 2003-3536.

[BP91] J. Bonet and J. Peraire. An alternated digital tree (adt) algorithm for
3d geometric searching and intersection problems. Int. J. Numer. Meth.
Engrg., 31:1–17, 1991.

[BS97] Mark W. Beall and Mark S. Shephard. A general topology-based mesh
data structure. Int. J. Numer. Meth. Engrg., 40:1573–1596, 1997.

[BS98] R. Biswas and R.C. Strawn. Tetrahedral and hexahedral mesh adap-
tation for cfd problems. Applied Numerical Mathematics, 21:135–151,
1998.

[CH94] S. D. Connell and D. G. Holmes. 3-dimensional unstructured adaptive
multigrid scheme for the Euler equations. AIAA J., 32:1626–1632, 1994.

[CPE05] W. Celes, G.H. Paulino, and R. Espinha. A compact adjacency-based
topological data structure for finite element mesh representation. Int. J.
Numer. Meth. Engrg., 2005. in press.

[CSW88] G. F. Carey, M. Sharma, and K.C. Wang. A class of data structures
for 2-d and 3-d adaptive mesh refinement. Int. J. Numer. Meth. Engrg.,
26:2607–2622, 1988.

[DH02] W. A. Dick and M.T. Heath. Whole system simulation of solid propellant
rockets. In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
and Exhibit, July 2002. 2002-4345.



502 Tyler J. Alumbaugh and Xiangmin Jiao

[DT90] H. Dannelongue and P. Tanguy. Efficient data structure for adaptive
remeshing with fem. J. Comput. Phys., 91:94–109, 1990.

[dvOS00] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry: Algorithms and Applications.
Springer, 2nd edition, 2000.

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-
Verlag Berlin Heidelberg, Germany, 1987.

[FG02] Pascal Jean Frey and Paul-Louis George. Mesh Generation: Application
to Finite Elements. Hermes, 2002.

[FGK+00] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr.
On the design of CGAL, a computational geometry algorithms library.
Softw. – Pract. Exp., 30:1167–1202, 2000. Special Issue on Discrete Al-
gorithm Engineering.

[Gla91] A. S. Glassner. Maintaining winged-edge models. In J. Arvo, editor,
Graphics Gems II, pages 191–201. Academic Press, 1991.

[GMT98] John. R. Gilbert, Gary L. Miller, and Shang-Hua Teng. Geometric mesh
partitioning: Implementation and experiments. SIAM J. Sci. Comp.,
19:2091–2110, 1998.

[GS85] L. J. Guibas and J. Stolfi. Primitives for the manipulation of general
subdivisions and the computation of Voronoi diagrams. ACM Trans.
Graphics, 4:74–123, 1985.

[HD00] M. T. Heath and W. A. Dick. Virtual prototyping of solid propellant
rockets. Computing in Science & Engineering, 2:21–32, 2000.

[HTW92] D. Hawken, P. Townsend, and M. Webster. The use of dynamic data
structures in finite element applications. Int. J. Numer. Meth. Engrg.,
33:1795–1811, 1992.

[JH03] X. Jiao and M.T. Heath. Accurate, conservative data transfer between
nonmatching meshes in multiphysics simulations. In 7th US National
Congress on Computational Mechanics, July 2003.

[Ket98] Lutz Kettner. Designing a data structure for polyhedral surfaces. In
Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 146–154, 1998.

[Ket99] Lutz Kettner. Using generic programming for designing a data structure
for polyhedral surfaces. Comput. Geom. Theo. Appl., 13:65–90, 1999.

[KV93] Y. Kallinderis and P. Vijayan. Adaptive refinement-coarsening schemes
for three-dimensional unstructured meshes. AIAA J., 31:1440–1447,
1993.

[L8̈8] R. Löhner. Some useful data structures for the generation of unstruc-
tured grids. Comm. Appl. Numer. Methods, 4:123–135, 1988.

[M8̈8] M. Mäntylä. An Introduction to Solid Modeling. Computer Science Press,
Rockville, MD, 1988.

[Mav00] D. J. Mavriplis. Adaptive meshing techniques for viscous flow calcu-
lations on mixed element unstructured meshes. Int. J. Numer. Meth.
Fluids, 34:93–111, 2000.

[NLT91] F. Noel, J.J.C. Leon, and P. Trompette. Data structures dedicated to
an integrated free-form surface meshing environment. Computers and
Structures, 57:345–355, 1991.

[Ove96] Mark H. Overmars. Designing the computational geometry algorithms
library cgal. In ACM Workshop on Applied Computational Geometry,
May 1996.



Compact Array-Based Mesh Data Structures 503

[PAM+98] D. Poirier, S. R. Allmaras, D. R. McCarthy, M. F. Smith, and F. Y.
Enomoto. The CGNS system, 1998. AIAA Paper 98-3007.

[Riv84] M. C. Rivara. Design and data structure of fully adaptive, multigrid,
finite-element software. ACM Trns. Math. Soft., 10:242–264, 1984.

[RKFS02] J.-F. Remacle, O. Klaas, J. E. Flaherty, and M. S. Shephard. Parallel
algorithm oriented mesh database. Engineering with Computers, 18:274–
284, 2002.

[RKS00] Jean-Francois. Remacle, B.K. Karamete, and M. Shephard. Algorithm
oriented mesh database. In 9th International Meshing Roundtable, 2000.

[RS03] Jean-François Remacle and Mark S. Shephard. An algorithm oriented
mesh database. Int. J. Numer. Meth. Engrg., 58:349–374, 2003.

[The02] The CGNS Steering Sub-committee. The CFD General Notation System
Standard Interface Data Structures. AIAA, 2002.

[Wei85] K. Weiler. Edge-based data structures for solid modeling in curved-
surface environments. IEEE Computer Graphics and Applications, 5:21–
44, 1985.

[Wei88] K. Weiler. The radial-edge structure: a topological representation
for non-manifold geometric boundary representations. In M. Wosny,
H. McLaughlin, and J. Encarnacao, editors, Geometric Modeling for
CAD Applications, pages 3–36. 1988.




